Class Notes for Applied Probability and Statistics
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These notes are for a upper undergraduate or first year grad course on Prob-
ability and Statistics, and are largely based on Hogg, McKean, and Craig’s ‘In-
troduction to Mathematical Statistics’ (International Seventh edition) which we
refer to as [1], or as ‘the text’. Section numbering follows the text, and problem
numbers often refer to the text. Problems within the notes are usually quite
easy, checking that we know definitions, and making simple observations that
we will use later. It is important to look also at the problems from the text.

We also add in a couple of applications of probability to problems in graph
theory as examples of non-statistical applications of probablility. The reference
for this is Alon and Spencer’s ‘The Probabilistic Method’, (or lecture notes of
the same name by Matousek and Vondrék.)

1  Probability and Distributions

1.1 Introduction

Probabililty theory in its pure form has much of the flavour of real analysis.
In this course on applied probability theory, we try to avoid this formality not
by sacrificing rigour, but by avoiding exceptional cases. We generally assume
things to be nice. Our goal is to get an introduction to how probablility can be
applied, both in statistics and in mathematics.

Probability theory for statistics is concerned with random experiments -
experiments that can be repeated several times, under the same conditions,
and have different outcomes. They are characterised by the fact that we cannot
predict the outcome of an individual experiment but can predict the frequency
of the outcome over many repetitions of the experiment.

For example, an experiment might consist of tossing a coin. We cannot
predict whether the outcome will be heads or tails, but if we toss the same coin
100 times, we are all going to guess that the outcome will be heads 50 times.

Would we bet on it though? Would you take the following bet? You pay



W1000 and toss a coin 100 times. If the outcome is heads exactly 50 times, you
win ¥W2000.

Probably not. Would you take the bet if you win in the case that the outcome
is heads between 40 and 60 times? This is the kind of question that probability
theory lets us address.

In statistics we will not be really be interested in probability that a coin
comes up heads, but perhaps we will be interested in the probability that a
given person in a population tests positive for some disease. Our goal will be
to look at the data of an experiment, estimate such a parameter, and then give
some measure of how good our estimate is.

One the other hand, the application of probability to mathematics is usually
a way of counting structures, and through this, determining properties that
most of the structures have, or showing that a structure with a given property
must exist.

For example, by constructing a graph by randomly adding an edge between
any two vertices with some given probability, and then calculating the proba-
bilities that the graph has small cycles or large independent sets, we show the
existence of graphs of large girth and large chromatic number.

The obvious commonality in these applications is the notion of something
happening randomly. This brings us to random variables, which are the starting
point of our course.

1.2 Set Theory

We will generally consider sets of points in R or R™, such as

C=A{(zy)lz e R,y = 2z}.
The union and intersection of sets are denoted standardly by such notation
as Cl U Cg, UleCi, U{’ilci, Cl n CQ, ﬂleci, and ﬂ;’il()i.

The empty set, or null set is often (but not always) denoted in [1] by ¢, but
I will use the more standard 0.

Subsets are denoted C; C Cy and may be equal. A set C is usually assumed
to be a subset of and underlying universe €, and the complement of a set C is
defined as

C=¢-C={xe¥|xgC}.

(The notation X will play a different role.)

Recall the following basic set laws.

) CuCe=¢.



) CNnCe=40.
i) CUE =C.

) CNE =C.

) (C1UCy)¢ =C§NCE (Demorgan).
vi) (C1 N C)° = C5UCK.

Definition 1.2.1. The powerset (%) of a set € is the set of all sets in €.
A o-algebra of € is a subset B C (%) that contains €, and is closed under
complements, countable unions and countable intersections. A set function on
% is a function F': B — R*™* =R U {£o00} for some o-algebra of €.

D

For any set %, the powerset Z(%) is clearly a o-algebra. A set function F

v

defined on a o-algebra B of € can be inocuously extended to a set function on
P(€) by setting it equal to 0 on any set not in B. So we often omit explicit
mention of a o-algebra, taking it as Z(%).

Example 1.2.2. The cardinality map | - |, acting like:
I{1,3,5,6,7} =5,
is a set function on any finite set €. Its range is the natural numbers N C R.

Example 1.2.3. The area function Q is a set function on R2.

* Q{(z,y) |z,y €[0,1]}) = 1.

o Q{(z,y) | |(z,y) — 0| < 1}) = 2.
e Q({(z,y) |ly=2z})=0.

* Q({(z,y) |z =0}) = co.

The area function is really just an integral. More generally for any function
f :R"” = R we have a set function @y on R" defined by

) = #C £(&) di.

Example 1.2.4. Let Q = Q.- then for C = [0,00) € R, we have:

[e%s) N
e “dr= lim e *dx
0 N—oo 0

Q(C)

_ : _—xz\ |N
- J\}gnoo( € )|z:0

= lim (e V+e")=0+1=1

N—o00



The support of a function f : € — R is the subset Supp(f) C € defined by

Supp(f) ={z € ¢ | f(x) # 0}.

Observe that for the set function Qf, Q¢(S) = Q#(S N Supp(f)) for any S €
P(€). As such, we often assume that € = Supp(f) for some f.

Problem 1.2.5. Show that if & is a o-algebra of ¢, and f is a function on €,
then the family
{SNSupp(f) | S € £}

is a o-algebra of Supp(f).
Now, it is clear that for any f : R™ — R with finite or countable support,

Qy = 0. In such cases, we will consider a discrete analogue Qs (C) = > . f(z).

Example 1.2.6. Let f : R — R be defined by f(z) = (1/2)* for z € Z*
(positive integers) and f(x) = 0 otherwise. Then

Qr{xreN|jz<3})=1/2+1/4=3/4
and

Qr(R)=Q(Z*)=1/2+1/4+-- =1

This is our first introduction to what will become a consistant theme in the
course: concepts and definitions will frequently have continuous and discrete
versions.

Problems from the Text

Section 1.2: 1,5,6,8,11,14,16

1.3 The Probability Set Function

Definition 1.3.1. A probablility set function on a set ¥ is a set function P on
(some o-algebra B of ) € such that

i) P(C) >0 for all C' C B.
ii) P(¢)=1.

iii) P is countably additive: for a family {C,},en of pairwise disjoint sets

C, C B,

P(U;,Cr) =Y P(Ch).



We are now ready to define the basic setup that we will assume throughout
the course.

Definition 1.3.2. A (random) experiment or a probability space consists of a
set €, and a probability set function P defined on a as o-algebra B of €. We call
% the sample space, and elements of B the events. Elements x € % are called
outcomes, or sometimes, viewed as singleton sets in B, elementary events.

Often a probability function, expecially for finite (discrete) %, is defined
additively by its value on elementary events.

Example 1.3.3. Tossing a coin is a random experiment with two outcomes:
¢ = {H,T}. The probablility function on ¢ is defined by P({H}) = 1/2 by
additivity eg.:

P({T}) = P(¢ —{H}) = P(¢) - P({H}) =1 -1/2=1/2.

For elementary events like {H}, we will write P(H) for P({H}).

Example 1.3.4. Tossing two identical coins is a random experiment with three
possible outcomes: ¢ = {HH, HT,TT}. The probability function is defined by
P(HH) = P(TT) = 1/4 and P(HT) = 1/2. The event C' = {HT, HH} has
probability P(C) = 3/4.

Given a random experiment, we often define events non-formally: the event
C ={HT,HH} can be described as the event that ‘at least one head is tossed’.
We would say ‘The probability that at least on head is tossed is 3/4.” and write
P( at least on head is tossed ) = 3/4.

Problem 1.3.5. Tossing two non-identical coins is an experiment with four
possible outcomes: ¢ = {HH,HT,TH,TT}. What is the probability that at
least one head is tossed?

Problem 1.3.6. Let & be the set of 36 possible outcomes
{(i,5) 4,5 € [6]}

when two different dice are rolled. What is the probablility of the following
events (assuming that each outcome is equally likely)?

)i+j=7

i) i+ j is even

iii) @ > j.
Example 1.3.7. A p-coin is a coin that when tossed, shows heads with prob-
abilty p and shows tails with probability 1 — p. Tossing a p-coin is a random

experiment wtih ¢ = {H,T} such that P(H) = pand P(T) =1—p. ( A
1/2-coin is called a fair coin.)



Unless otherwise stated, when we talk about events, it is always assumed
that they are events of a sample space ¥ with a probabilitiy set function P.

Theorem 1.3.8. For events C,Cy and Cs, the following hold.

i) P(C°) =1—- P(C).

i) P(0) = 0.
iii) Cy C Cy = P(C}) < P(Cy).

iv) 0< P(C) < 1.

v) P(CyUCy) = P(Cy) + P(Cy) — P(Cy N Cy).

Proof. All of these are pretty easy using the additivity of P. O

Now, the above theorem immediately yields the following which is known as
Bonferroni’s Inequality.

P(Cl ﬂCQ) > P(O1)+P(CQ)71 (1)

A sequence of events {C,,} is non-decreasing if C,, C Cp41 for each n. A
sequence {D,} is non-increasing if D,, D D,11. In this case we often write
lim,, 00 C; for U, C; and lim, oo D; for NS, D;.

Given a non-decreasing sequence {C,, } of events, if we let R, 11 = Cpp1 —Ch
for each n, then the events R,, are pairwise disjoint, and so by the additivity of
P we have that

P(nh_{go Cpn) = P(UpLCn) =P(UpL Ry) = Z;P(Rn)
= nl;n;o;P(R,) :nILH;oP(Ci).

That is, we can interchange P and the limit. We have essentially shown the
'non-decreasing’ part of the following.

Theorem 1.3.9. Let {C,} be a non-decreasing or a non-increasing sequence
of events. Then

lim P(C,) = P(lim C,).

n—roo n—oo
Problem 1.3.10. Prove the above theorem for a non-increasing sequence of
events.

Using C), = C,, — U?:_ll C; instead of R,, in given proof of the above theorem,
we get the following.



Theorem 1.3.11 (Boole’s Inequality). Let {C,} be a sequence of events. Then

P(UZ.,Cy) < i P(Cy).

Example 1.3.12. In a experiment, you flip a coin until you get two consecutive
heads or two consecutive tails. The sample space is

¢ ={HH,TT,HTT,THH, HTHH,THTT, HTHTT, THTHH, ... }.

What is the probabilitly that the experiment ends with an H?

Letting C; be the event that we finish with two heads in at most 7 flips, we
get that P(Cy) = P({HHY}) = 1/4, P(Cy) = P({HH,THHY}) = 1/4+1/8, and
in general that P(C,) = 1/4+1/8+4...1/2". By Theorem , we get that the
probability C' = U2,C; that the experiment ends in two heads is

P(C) = P(UX,C) = nli_)ngo(zn: 1/2%) = i /28 =1/2.

There is another easy way to do the above examples. Assuming that the
experiment ends, it is easy to see, by symmetry, that it is equally likely to end
with H or with T, so with probability 1/2 it ends with H. This uses conditional
probability, which we will see next section, but still it must be shown that the
experiment ends. Or more precisely, it must be shown that the probability that
the experiment ends is 1.

Problems from the Text

Section 1.3: 1,3,5,8,10,13,15,20

1.4 Conditional Probability

In an experiment with some event C'4 of probability 1/3, and another event Cg
of probability 1/2, does the knowledge that C4 occurs affect the probability
that Cg occurs?

It can.

In the following picture let C'4 be the event that a randomly placed dot in
% is placed in the orange region and Cp be the event that a randomly placed
dot in ¥ is placed in the blue region.



In the first picture, knowing that event C, happened doesn’t affect the
probability of event C'z. In the second picture, the fact that C'4 has occured
implies that event Cg definitely occurs.

In the first picture, the events C'4 and Cp are independent and in the second
picture they are not. Let’s give this a mathematical definition.

1.4.1 Conditional probability and independence

Definition 1.4.1. For events Cy and C5, the conditional probability of Cy given
CQ is
P(CyNCy)

P(C2)

The events C; and Cy are independent if P(Cy | Cy) = P(Ch).

P(C1| Ca) =

Notice that if two events C; and Cs are independent then we have that
P(C1NCs
P(C1) =P(Cy | Cs) = 7(},(82) ) and so
P(Cl)P(CQ):P(ClﬁCQ) (2)

And indeed this is an alternate definition of the independence of events, and
because of this, independent is sometimes called multiplicity.

Example 1.4.2. In the experiment ¥ = {(¢,5) | ¢,j € [6]} where we roll two
independent dice. We define the events C7 : 1 < 3,Cy:j < 3,and C3:i+j = 8.
Intuitively, we feel that the events C; and C5 should be independent, while C3
should depend on either of them. Indeed, we see, among other things that
P(Cl) = P(CQ) = 1/2, P(Cg) = 5/36, P(Cl ﬂCQ) = 9/36 = 1/4, and

2,6),(3,5
P(C5NCy) = M = 1/18.
36
This gives the conditional probabilities,

o P(C1]Cy) = P(CrNCL)/P(Cy) = (9/36)/(3/36) = 1/2 = P(Ch),

o P(Cy | Ch) = P(CaNCh)/P(Ch) = (1/6)/(1/3) = 1/2 = P(Cy), and

o P(Cy | C1) = P(C3n C1)/P(Cy) = (2/36)/(3/6) = 1/9 # 5/36 = P(Ch).



We conclude that C is independent of Cy and Cs is independent of C7, but C;3
is not independent of C'.

Notice that C; and Cy were independent of each other. This should be
expected, as it is clear from (2) that independence is a symmetric relationship.
Here are some other obvious facts.

i) P(Cy | Cy) =1.
ii) P(Cy | Co) = P(CLNCy | Cy).

ili) For fixed Cy the function P(- | C2) : (€) - R: Cy — P(Cy | Cs) is a
probability set function.

iV) P(Cl n Cg) = P(CQ)P(Cl | CQ) = P(CQ)P(CQ | Cl)

This last fact can be extended to more events

P(C1NCyNCs) = P(CyNCy) - P(Cy | CyNCy)
= P(Cy)-P(Cy | Cy)- P(Cs | C1 N Co)

and used as a way to calculate the probability of an intersection of events.

Example 1.4.3. There is a bucket 10 different coloured jelly-beans. In an
experiment you reach your hand into the bucket and pull out 3 jellybeans unseen.
The probability of the that we pull blue, green, and red, is 1/ (130). But we
can compute this another way. The probability P(C}) that one of the chosen
jellybeans is blue is P(C) = (3)/(), the probability that one of the other two
is green is P(Cy | Cp) = 8/ (g) and the probability that the final one is red is
P(C, | CyanCy) =1/8.

This checks out, as

—_

1
(5

We have been using the notion of independence implicitly in some of our
examples. In the experiment when we tossed two coins, we said the probability
of the outcome, say HH, was P(HH) = 1/4. We were assuming that the
outcome of the second toss was independent of the outcome of the first. In this
case we say that the two tosses, or experiments, are independent.

We also assumed independence of the two dice rolls in the two dice experi-
ment.



1.4.2 Bayes Theorem

Let the events C4, ..., C, be a partition of the sample space %’; that is, assume
that

i) C; and C; are independent for i # j € [n], and

i) UC; = ¢.

The the outcome of an experiment on ¢ must be in exactly one of the C7, and
so for any event C' we have that

n

P(C)=> P(CNC;) = ZP(C | Cy) - P(C)). (3)

i=1

Example 1.4.4. Consider the following experiment:
i) Flip a 1/3-coin A.
ii) If A shows heads, flip a 1/3-coin By; if A shows tails, flip a 1/2 coin Bs.

Let C7 be the event that we flip By, and C5 be the event that we flip Bs.
Let C'y be the event that the second coin we flip shows heads.

Now it is easy to compute P(Cg|C1) = 1/3, and say,

P(Cy) = P(Cy|Cy)-P(C1)+P(Cy|Cy)-P(Co) = (1/3-1/3)4+(2/3-1/2) = 4/9.

But what is P(C; | Cg)? Intuitively, we see that in the computation of
P(Cy), 1/9 of the 4/9 came from the case when C; held. So P(C} | Cy) = 1/4.

This is exactly what Bayes Theorem says.

Theorem 1.4.5 (Bayes Theorem). Let the events Cy,...,Cy € B be a partition
of the sample space €, and C € B. Then for any j € [n],
PCNGy) P(C;)P(C | Cj)

PETO =S pene) ~ S PEPE] )

Proof. Indeed,

_P(CnCy) _ P(C|C)P(C))
PGTO="pey =7 Py

Putting (3) in the bottom of the right-hand side gives the identity. O

10



Example 1.4.6. Plants 1, 2 and 3 produce respectively 10%, 50%, and 40%
of the light bulb produced by a lightbulb company. Light bulbs made in these
plants are defective with probabilities .01, .03, and .04 respectively. What is the
probability that a randomly chosen defective lightbulb was produced in plant
17

By Bayes Theorem the probabilitly is
.10 % .01 1

(.10 %.01) + (.50 * .03) + (.40 % .04) ~ 32

1.4.3 Mutual Independence

Definition 1.4.7. Events C1,...,C), are pairwise independent if for all i # j,
C; and Cj are independent: P(C; N C;) = P(C;) - P(C;). They are mutually
independent if for all S C [n],

P(() ) =] P
= =i
Problem 1.4.8. Show that a family of independent events need not be mutually

independent.

Problem 1.4.9. Show that if C1,...,C, are mutually independent, then so
are

i) C1y UCy and Cj3, or
ii) C{ n Cg and C3.

Problems from the Text

Section 1.4: 6,8,11,18,23,30,34

11
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A The Probabilistic Method

The Probabilistic Method is a technique that uses probability to prove the
existence of a structure having certain properties. The main random structure
we will consider is the random graph model introduced by Erdés and Rényi in
1959.

A.1 The Erdos Rényi Random Graph

Definition A.1.1 (The Erdds Rényi Random Graph). The random graph G,
on n vertices [n] is constructed as follows. For each pair of vertices u, v the edge
(u,v) is in Gy, with probability p, independent of the existence of other edges.

We view the random graph G, , as a sample space, containing 2() basic
outcomes, each being a (labelled) graph on n vertices. The probability that Gy, ;,
is a given graph H on the vertices [n] depends on the number of edges of H. If

H has |E(H)| = m edges, then the probability that G,, , = H is pm(l—p)(g>_m.

Problem A.1.2. Show that when p =1/2, P(G,,, = H) is the same for every
graph H.

In applications of the Probabilistic Method we show that the event S that
Gn,p has certain properties with has positive probability. In the case that p =
1/2, such an argument can usually be reformulated as a counting argument,
showing that the number of graphs on n vertices without the property is less

than 2(2). Our first example is such a case, but we quickly get into examples
that are hard to do without probabilistic ideas.

A.2 Ramsey Numbers

Definition A.2.1. Recall that an independent set in a graph is a subset of
the vertices which induces no edges, and a clique in a graph is a subset of the
vertices which induces a complete graph. The ramsey number R(i,k) is the
minimum number of vertices n such that any graph G on n vertices contains
either a independent set of size ¢ or a clique of size k.

Ramsey showed in 1933 that R(i, k) exists for all ¢ and &, but finding the ac-
tual value of R(i, k) is notoriously difficult. The current bounds for the diagonal
case 1 = k are approximately

V2" < Rk, k) < 4",

and we only know R(k, k) exactly when k < 4.
We use the Probabilistic Method to get the above lower bound.

13



Theorem A.2.2. For k>3, R(k, k) > 2F/2-1,

Proof. Let n < 25/2=1 The idea is to show that in the random graph G =
G172, the probability of the event: there is a clique of size k or an independent
set of size k’ is strictly less than one, so that there exists a graph with no such
substructure.

Indeed, the probability that there is a clique of size k on a given set of k
vertices in G is (2)7(5) and there are (g) such sets, so using the subadditivity
of probability for non-independent events, ( part (v) of Theorem 1.3.8 ) the
probability of a clique of size k is at most (2)2_(3) Similarily, the probablility of

an independent set of size k is at most (2)27(1’;), and so , again by subadditivity,

the probability of either a clique or an independent set of size k is less than
k
2()27 ).
But then

K2k

n <2kl o pk o9t 5t —9(5)

k
n n k k
= Q(k) <2-—k! <n <2(2)

= 2(2)2(5) <1

So if n < 2F/2=1 there exist graphs on n vertices with no clique or indepen-
dent set of size k. Thus R(k, k) > 2F/2-1, O

A.3 Erdos-Ko-Rado
A family ¥ C ([Z]) of k-element subsets of [n], is intersecting if every pair
A, B € F of sets in the family have non-empty intersection: |[AN B| > 1.

The family Fy = {A € ([Z]) | 1 € A} of all sets containing a given element,

is clearly intersecting, and has size (Zj) The following theorem shows that no

intersecting family can be bigger.

Theorem A.3.1 (Erdés-Ko-Rado). Let F C ([Z]) be intersecting. Then

n—1
< .
3"|<k_1>

Further, it is known that the only intersecting families even close to this
bound are isomorphic to a subfamily of Fy. The proof of this 'Further’ bit is
tricky. We give now a beautiful probabilistic proof of the above theorem.

14



Proof. Let As € ([z]) be the set of k consecutive integers from s to s +k — 1
(modulo n). Tt is easy to see that an intersecting family F can contain at most
k of these special sets Aj.

For any permutation o of [n] we also have that
o0(4s) ={o(z) | x € As}

is in J for at most k values of s, so for a random choice of s the probability that
o(Ag) is in F is at most k/n.

But a random choice of o and s is a random choice of a set in ([Z]) so the
probability that o(A,) is in F is exactly |F]/(}).

Thus k/n > |F|/(}) which yields

n-2)-(0)

A.3.1 Colourings

Recall that K} is the clique on b vertices.

Problem A.3.2. Let R*(b,r) be the minimum number of vertices in a graph
G such that for any 2-colouring of the edges there is a blue copy of K or a red
copy of K, in G. Show that R*(b,r) is the ramsey number R(b, r).

As in our proof for the lower bound for R(k,k) we can view the random
graph Gy, as a clique K, with randomly coloured edges. Using a random
colouring of [n] show the following.

Problem A.3.3. Let F be a (not-necessarily intersecting) subfamily of ([Z]),
of size |F| < 271, Show that there is a 2-colouring of [r] such that no set in F
is monochromatic (i.e. for no set is every element the same colour).

15
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1.5 Random Variables

Definition 1.5.1. A random wvariable or RV is a real function
X:2—R

on the sample space 2 of some experiment. The image € = X (2) is called the
space of X.

Example 1.5.2. In an experiment, we flip 100 fair coins. So the sample space
is 2 = {H,T}'%. Let X be the random variable such that counts the number
of heads in an outcome of 2. Then ¢ = X(2) = {0,1,2,...,100}.

The random variable is used to define a new probablity space on € =
{0,1,2,...,100}, which is usually a bit easier to work with than the original
probability space on 2 = {H,T}'%°. We now define the probabililty set func-
tion of the new space.

Definition 1.5.3. The cumulative distribution function or cdf of a random
variable X is the function F, : R — [0, 1] defined by

Fx(z) = P(X < z).

D

The distribution of a probability space is a list of the probabilities of each
possible outcome. Its definition is slightly different depending on whether
the sample space is countable or continuous, but is closely related to the
probability set function.

Restricting to the probability space defined by a random variable, it will be
defined, in the upcoming sections, as a ‘pmf’ or ‘pdf’, which will be (essen-
tially) defined by the cdf.

Because of this, we casually refer to the cdf, or even an RV itself, as a distri-
bution.

Problem 1.5.4. Show that the cdf of a random variable is a probability set
function on its space.

Problem 1.5.5. In the above example what is the probability P(2 < X < 30)?

100
) =

and that in general, for = € €,

Example 1.5.6. Continuing the above example, we have that F'x (0) = (

Fx(100), that Fx(1) = Fx(0) + (1) (3)'*

1 100 =z 100
- £(%)
=0
Observe also that we have such values as Fx(—3) = 0, , Fx(499) = 1, and
Fx(2.3) = Fx(2).

17



Problem 1.5.7. What is the cdf of a random variable X that counts the number
of heads in an experiment in which 100 p-coins are tossed?

Problem 1.5.8. In the two dice experiment with the sample space 2 = {(z,y) |
x,y € [6]} of 36 equally likely outcomes, let X : € — R be the random variable
defined by X ((x,y)) = © + y. Find Fx(4).

Example 1.5.9. Let X be the identity on the sample space ¢ = [0, 1] in which
each outcome is equally likely. Then Fx(z) = P(X < x) = =z, for z € [0,1].
(Also Fx(z) =0ifx <0 and Fx(z)=1if z > 1.)

A random variable X is discrete if its sample space € is finite or countable.
Examples 1.5.2 and 1.5.6 have discrete RVs while the RV in Example 1.5.9 is
not discrete. The treatment of discrete and non-discrete RVs is a little different,
and we will consider them separately in the next two sections. But before we
do this, we make a couple more observations about the cdf.

Theorem 1.5.10. Let F' be the cdf of an RV. Then

i) a<b= F(a) < F(b),
i) limg oo F(x) =0,
iii) limg 00 F'(z) =1, and
) lim,_,,+ F(z) = F(a).
Problem 1.5.11. Prove the above theorem.
Problem 1.5.12. Show that lim, ,,- F(z) = F(a) need not be true.

Problem 1.5.13. For an event B C 2, the indicator random variable Ig :
2 — 10,1], is defined by

1 ifzeB
Ip(x) = { 0 otherwise.

Show that P(Ip = 1) = P(B).

1.6 Discrete Random Variables

Recall that a random variable X is discrete if it has a countable sample space
% . For such a variable one can talk of the probability of a given outcome = € % .

Definition 1.6.1. For a discrete random variable X, the probability mass func-
tion or pmf of X is the function px : R — [0, 1] defined by



Example 1.6.2. Let X be the random variable that counts the number of flips
of a fair coin you make until one coin shows up heads. The sample space € of X
is the positive integers. Then we have, for example, px (1) = 1/2, px(2) = 1/4,
px(n)=1/2" and px(1/2) = 0.

Problem 1.6.3. Show that for the pmf p of a discrete RV X, Y~ . p(z) = 1.

Example 1.6.4. Let X be the random variable from Problem 1.5.7 that counts
the number of heads showing up when we a p-coin 100 times. Then

px(37) = (13070>P37q63 = Fx(37) — Fx(36).

This exhibits a fundamental relationship between the cdf Fx and the pmf
px of a discrere RV:
Fx(x)= Y px(i).
1€F, i<z
Problem 1.6.5. Prove this. Show that it need not hold for non-discrete RVs.
(Hint: What is px when X is the RV from Example 1.5.97)

The problem above exhibits the main difference between discrete and non-
discrete random variables. The pmf may be trivial for non-discrete RVs. In the
next section we will define an analogue of the pmf for certain nice non-discrete
RVs. Before we do this though, we talk about transformations of random vari-
ables.

Problems from the Text

Section 1.5: 2,3,8,9

1.6.1 Transformations of Discrete RV

Often we will define one random variable as a function of another.

Example 1.6.6. Let X be an RV with space ¥ = {£1,£2,...,£5}, and
px(x) =1/10 for all x € €

Let Y = X2 Then Y is an RV with space 2 = {1,4,9,16,25}. For each
y € 2 we have that

py(y) = P(

(-
v
SIP
I

4 s

So py(y) =1/5 for all y € 2.
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It is easy to see that in general, if Y = ¢g(X) then
py()= Y. px(a)
z€g~'(y)
If g is one-to-one, this simplifies to
py () = px (g (2)).

Problem 1.6.7. Show that if Y = ¢g(X) for monotone strictly increasing g then
Fy(g9(x)) = Fy(z). What can we say if g is decreasing?

Problems from the Text

Section 1.6: 1,2,3,5,7,10

1.7 Continuous Random Variables

Recall that if an RV X is not discrete, its pmf px () = P(X = z) = lim._,o(Fx (x)—
Fx(z —€)) may be identically 0. Indeed this is the situation we want.
Definition 1.7.1. A random variable X is continuous if its cdf Fx is a contin-
uous function on R.

For such functions px is identically 0.

Definition 1.7.2. A random variable X is absolutely continuous if

Fx(fﬂ) = /:E fx(t)dt

for some function fx. Then function fx is called the probability density function
or pdf of X.

We will never consider RVs that are continuous but not absolutely continuous
(though the exist); so any time we say an RV X is continuous, we will
assume that it has a pdf fx. It then follows by the fundamental theorem of

calculus that p

The pdf of a continuous RV is the analogue of the pmf of a discrete RV.
Problem 1.7.3. Show that for a continuous RV X,

Pla< X <b) :/bfx(t)dt.
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Example 1.7.4. Recall the RV X from Example 1.5.9 that had cdf Fx(z) =«
for all z € [0,1]. Its pdf is the derivative

fole) = i) = 7 () = 1

We say that an RV X (or its sample space €) has a uniform distribution
if the pdf ( or pmf ) is constant on its support. The RV X from the above
example is said to have the standard uniform distribution. This is denoted
X ~ Unif(]0,1]). The RV X from Example 1.6.6 is a uniformly distributed
discrete random variable.

Given a sample space ¢, we sometimes say that an event is ‘chosen at random’

to mean we an event is chosen according to a uniform distribution.

Problem 1.7.5. Find the pdf of the uniformly distributed random variable
X ~ Unif([-1,1]) on the space € = [-1,1].

Problem 1.7.6. Show that for a uniformly distributed space ¥ C R™ the
probability of an event C' is

P(C) = fh 1da

- ¢h 1dx
That is, show that the probability of an event is proportional to its volume.

Example 1.7.7. Let a point (z,y) be chosen randomly from € = {(z,y) |
2?2 +y% < 1} and let X be its distance from (0,0). By definition ¢ is uniformly
distributed, but € is not the space of X. (The space of X is [0,1].) We observe
that X is not uniformly distributed.

Indeed, its cdf is Fx(t) = P(X < t) which is the area of the event {(z,vy) |
2?2 + y? < t} over the area of ¢ (which is 7.) So

FX(a:)zl/ﬂ/ Zwtdt:/ 2t dt = 2*
0 0

for z € [0,1]. And so fx(z) = £ 2% = 22, which is not constant.

1.7.1 Transformations of Continuous RVs
Now let Y = X2 be a transformation of X from the above example. So Y =

g(X) where the function g(z) = 22 is monotone strictly increasing on the space
(0,1]. Tt is tempting to follow the discrete case and say that the pdf of f is

fy(w) = fx(g7 () = 2Vy.
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But this is not true! Indeed, the cdf of Y is
Fy(y) = P(Y <y) = P(X* <y) = P(X < /) = Fx(\/y),
but this is Fy (y) = \/QZ =y and so the pdf is fy(y) = d%y =1.
Of course! A transformation is just a change of variables from calculus. In

general, differentiating the above equation Fy-(y) = Fx (g9~ !(y)) with respect to
y, we get, by the chain rule,

Fo) = Fxlo™ W) 4007 0) = (o™ ) - -

Indeed, this is what we found:

1
- -1
2y

We have proved the following theorem (in the case that g is monotone in-
creasing).

Theorem 1.7.8. Let X be a continuous RV with pdf fx(x) and let Y = g(X)
where g is one-to-one and differentiable on the support of X. Then the pdf of
Y is

Fry) = fx(o~ () - ;’iy” — 2.5 d%@ SN

fyr(y) = fx (g7 () - ||
where J = d%g’l(y), fory in the support {g(z) | z € Supp X} of Y.

Problem 1.7.9. Where in the proof are we using that fact that g is monontone
increasing?

The value J = d%g_l(y) is called the Jacobian of the transformation g. In

other books it may be called the Jacobian of g~ !.

Example 1.7.10. Where X ~ Unif((0,1)) let Y = —2log X. So Y has support
(0,00). The transformation h : X — Y : x — —2log x is one-to-one with inverse
h=1(y) = e¥/2 50 it has Jacobian

d 1

— U2 = _Zoy/2
J dye 5¢ .
The pdf of Y is thus
1 1
fr(y) = fx(e?)- 1] =1 567”2 = ie*y/Q

on the support of Y.

Problems from the Text

Section 1.7: 1,2,5,6,8,9,10
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1.8 Expectation of a Random Variable

Definition 1.8.1. For a random variable X, the expected value or expectation

of X is
E(X)=) apx(x)

z€EE
or

E(X)= /Oo xfx(x)dz

— 00

depending on whether X is discrete or continuous.

@D

Technically, being an integral or possibly infinite sum, the expectation need

not always exist for an RV. And indeed, we should insist that the sum/integral
is absolutely convergent so that the expectation is independent of an ordering
of the sample space. But this is not an issue for all RVs that we consider.
In theorems dealing with expectation, we will implicitly assume sufficiently

StI‘Ol’lg convergence.

Example 1.8.2. The expected value when you roll a die is (1+24---+6)/6 =
3.5.

Example 1.8.3. Let X be the distance from (0, 0) of a randomly chosen point
in the unit circle S = {(z,y) | 2% + y* < 1}. What is E(X)?

Using that the pdf of X is f(z) = 2z (from Example 1.7.7), we get that

o0 1
EX) = / x~2xdx:/x~2xdx
0

— 00

1
2/ ® de =2 (1/3¢%), = 2/3
0

Now, ignoring issues of convergence (dealt with in Theorem 1.8.1 of [1]) we
see that for any transformation Y = g(X) of an RV X we have

E(Y) = Y ypv®)=>_uy > px(@)

Cy Cy g(z)=y
= Z Z ypx(z) = Z Z 9(x)px ()
Cy g(z)=y Cy g(z)=y

= > g@)px(x).
@

The following tool is immediate from the above using the linearity of sums
and integrals.
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Theorem 1.8.4 (Linearity of Expectation). If Y = kjg1(X) + kogo(X) then
E(Y) = ki1 E(g1(X)) + k2E(g2(X)).
Problem 1.8.5. Prove Theorem 1.8.4.

Problem 1.8.6. Where Y = X? for X from Example 1.8.3, what is E(Y)?
(Make a guess before you compute it. What should it be?)

Problem 1.8.7. Let I¢ be the indicator variable (see Problem 1.5.13) for an
event C' € €. Show that E(Ic) = P(A).

Problem 1.8.8. Let X count the number of heads that show up when n inde-
pendent p-coins are flipped. Find E(X).

Problem 1.8.9. Let v be a randomly chosen vertex in Gy, ,. What is the
expected degree E(deg(v)) of v.

Problems from the Text

Section 1.8: 3,4,6,7,8,9,11

1.9 Mean Variance and Moments

Given a random variable X, we will be interested in the expected value of
various functions of X. Certain ones get special names and notation. The
expected value of X is also called the mean u = E(X) of X. Then variance of
X is

0% = Var(X) = E ((X — pn)?).

Expanding the square in expression on the right, and using the linearity of
expectation, we get that

o’ = E(X*-2uX+p?
= E(X?) —2uBE(X)+ u?
= B(*) -’

Then positive square root o of the variance is called the standard deviation
of X.

Example 1.9.1. Let X have pdf f(z) =

o2

We get

2(x+1) for z € [-1,1]. Find p and

=
]
=
>
I
\H
5
=
>
QU
&
I

1

2

1/1 1
- —(za+1)) =2
5 (30+0) =3



and
2 2 2 Lo 1
o =E(X")—p = = z®+axidr — =
1/1 1 1
= 17/36.
Problem 1.9.2. In terms of Var(X) and Var(Y'), what is Var(X —Y)?

1.9.1 The moment generating function

The mean px = F(X) has yet another name. It is also called the first moment
of X. And the value E(X?), used in the compuation of the variance, is called
the second moment of X. In general E(X™) is the n'" moment of X. The 0%
moment is F(1) = 1.

Letting the moments be the coefficients of an exponential generating func-
tion:

E(X? E(X3
Mx(t) = E(1) + tE(X) + ¢* <2| ) + ¢ (3' ) + ...,
we get by the linearity of expectation that
tX)? :
Mx(t)=E(1+ (tX)+ (tX) +...) = E(e").

2!

So we have that the n‘" moment E(X™) of X is also denoted M)[?] (t).

From the cdf of an RV, one can compute the moments, and so find the
moment generating function. On the other hand, we know from an analysis
class, that the power series of a function expanded on an open interval around
a point, is uniqely defined, so the moment generating function uniquely defines
the moments of a distribution. The following theorem takes this one step further
and asserts that from the moments, we can recover the cdf. The proof of this is
beyond our scope, (and beyond the scope of the text).

Theorem 1.9.3. If Mx(t) = My (t) on some open interval around t, then
Fx(z) = Fy(2) for all z.

This function Mx (t) = E(e'*) is called the moment generating function or
mgf of X. As the taylor expansion of a function about a point does not always
converge, not all RVs necessarily have mgfs, and indeed the text gives examples
of RVs for which the mgf does not exist. But the mgf does exist for many RVs
that we will consider, and it will become a useful tool.

Problems from the Text

Section 1.9: 1,2,3,5,6,18,23
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1.10 Important Inequalities and Bounds

We finish the chapter with some basic inequalities.

1.10.1 Markov’s Inequality

Theorem 1.10.1 (Markov’s Inequality). For any RV X, any non-negative
function u of X and any constant c, the following are both true.

e P(X >c) < E(X)/c

o P(u(X) > ¢) < E(u(X))/c

Proof. The first statement is simply a special case of the second, so we prove
just the second. We prove it in the case that X is continuous. The proof in the
discrete case is essentially the same.

Let A= {z | u(z) > c}. (Recall that A° is its complement.) Then

Bux) = [ o) fx () do
— [ u@ix@dot [ ) fx()ds
A Ac
> /A u(a) fx () di
> C/A fx(x)dx = cP(x € A) = cP(u(z) > ¢).

The inequality follows. O

Markov’s inequality is crude. Indeed if X ~ Unif([0,4]) then E(X) = 2 and
taking ¢ = 1 the inequality says P(X > 1) < 2. We could certainly give a better
bound. However, the inequality is incredibly useful due to its universality.

1.10.2 Chebyshev’s Inequality

Corollary 1.10.2 (Chebyshev’s Inequality). Let X be an RV, then for every
e,k > 0, the following, clearly equivalent statements, all hold.

i) PX — | > ko) < 1/k?
i) P(|X —p| < ko) >1—1/k?

iii) P(|X —p| <e) >1—0?/e?
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Proof. Applying Markov wih u(z) = (X — u)? and ¢ = k%02 gives

E((X—-p?) 1
P((X*ﬂ)zzkzgz)gvfﬁ

O
In Problem 1.9.3 of the text, you were asked to find P(u—20 < X < p+20)

for an RV X with pdf f(z) = 62(1 — z). Compare this with the quick bound
we can now get without even computing p and o:

P(p—20<X<p+20)>1—-1/4=3/4

1.10.3 Jensen’s Inequality

You have probably seen the next inequality several times, and proved it in a
linear algebra class. It won’t hurt to see it again. We state it without proof.

Definition 1.10.3. A function f is convex on an interval I = [a,b] if for all
z,y € I and all n > 1,

n—1 n—1
n

Plafn+y"—=) < f@)/n+ fn) "=

The following picture for the case n = 2 show that this definition of convexity
agrees with the definition for a continuous function that it is convex if the second
derivative is positive.

(23]
-(:/\

a.{.’(z_g;)

! e
Ya : 7%

Theorem 1.10.4 (Jensen’s Inequality). If f is convex, then

p(Etzetm  fle) 4 o)+ 4 flan)
n o n
For any RV X, this means that
fFE(X)) < E(f(X)).
Example 1.10.5. The function 22 is convex so E(X)? < E(X?). Thus Var(X) =
E(X?) — E(X)? is non-negative.
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Problem 1.10.6. Sometimes the mean of a set of numbers {z1,...,2,} is
called the arithmetic mean AM = %Z x;, distinguishing it from the geometric

mean GM = ([]z;)"/™ and the harmonic mean HM = (£ >° z%)’l.

Using that —logx is convex, use Jensen’s Inequality to show that for any
set {z1,...,2,} of positive numbers, HM < GM < AM.

1.10.4 ‘Compoud interest’ and Stirling’s Formula

Recall from your financial math class that investing W1000 at .05 interest com-
pounded continuously yield a real yearly return of

lim 1000(1 +.05/n)" = 1000e%°.

This same inequality 1 4+ x < €%, is often used with probabilities:

(- <e,
I call this the compound interest bound. We can also get a lower bound

e~2mP ~ o—np(1-p/2)/(1=p) (1—p)"
which we use for probabilities p < 1/2.
In applications we will often have to bound n!. Often it is enough to write
(n/2)™2 < pl < nm,

but we get the following from stirling’s formula

(n/e)" <nl<ne(n/e)".

To bound (}) we can usually use

Problems from the Text

Section 1.10:

2,3,4,6
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2 Multivariate Distributions

In Example 1.5.2 we considered the experiment of tossing 100 p-coins and let
Y be the random variable counting the number of heads. The experiment can
be viewed as a set of 100 random variables X7,...,X,, each having the pmf
of a p-coin. In this context we can view Y as a function Y = Zzliq X, of the
multivariate distribution X = (Xji,..., Xj00). Lets go into more detail. .

2.1 Distributions of Two Random Variables

Definition 2.1.1. A random vector X = (Xi,...,X,) is a set of RVs on a
sample space Z. The space of X is

@ = [(X1(c), Xa(C), ..., X, () | c € 2.

Example 2.1.2. Where 2 are people in a sample population, X = (Height, Weight, Age)
is a random vector.

Example 2.1.3. The random graph G, , can be viewed as a random vector
consisting of (;) RVs X, each with the distribution of a p-coin, one for each
possible edge e on the vertices [n].

We extend many of our definitions for RVs to random vectors. For most
definitions the extension from two variables to arbitrarily many is trivial. For
those that it isn’t, we will revisit them later for more than two variables.

Definition 2.1.4. The (joint) cdf of X = (X1, X5) is

Fx(x) = Fx, x,(z1,22) = P (X1 < 1) and (X3 < z9)).
The (joint) pmf for discrete X is

px(®) = px, X, (21, 22) = P ((X1 = 21) and (X2 = x2)).
The (joint) pdf for continuous X is a function fx such that

Xy )
Fx(x) :/ / fx(t1,t2) dt1 dis,

so almost everywhere we have

o 82Fx(1‘1, 332)
fX(CU) a 8x18x2 '

Example 2.1.5. Let fz(x1,72) = 623wy for 2; € (0,1) be the joint pdf of
X = (Xl,XQ). Then P(]./4 < X; < 3/4,0 < 2o < 2) is

SRS

1 3 o
/ 6231y dxodx; = / 322 dx; = [29]7 = 13/32
0 S

1
4

.zsba\:
N[
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From the joint pmf of a random vector, we can isolate the (marginal) pmf
of any one component RV as follows,

PX1 £E1 E px 131,952 ,

where }is over all x5 such that (v1,72) € €.

The marginal pdf of component of a continous random vector is defined
analogously.

Problem 2.1.6. Find the marginal pdf of X; for the joint distribution fz(x1,22) =

62225 from the above example.

The following generalisation of Theorem 1.8.4 to random vectors is a key tool
in saying anything of substance in statistical inference or with the probabilistic
method.

Theorem 2.1.7 (Additivity of Expectation). Let X = (X1,...,X,) be a ran-
dom vector and ki, ..., k, be real numbers. Then

E(Z kiX;) = Z kiE(X

Proof. We do the continuous case for a vector of two RVs:

Eki X1+ ke Xo) = //(kﬁl + koxo) fx (21, x2) dxo dxq

k1//$1fx (21, 22) ddeX1+k2//SU2fx (21, 22) dxo dxq

= E(Xy)+ kaE(X2)

O

We can talk of the expected value of a random vector. It is simply the vector
E(X)=(E(Xy1),...,E(Xy))

of expected values of its components. To find the expected value of a random
vector on must find the expected value of the components. To find E(X;), or
more generally E(g(X7)), we can get the marginal distribution of X7, and then
find the expected value as in the previous chapter. Or we can find it directly:

Example 2.1.8. Where fx(z1,23) = 63:1962, the expected value of Xl is

//scl 63:1332d:v1dm2
6
= - d —
2/0 621 d = 10
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Problem 2.1.9. Find E(X?) in the above example by using the marginal dis-
tribution of X; which you found in Problem 2.1.6.

Definition 2.1.10. The mgf of X = (X3,...,X,) is
Mx(t) — E(et"”) — E(€t1m1+tzm2+~~+tnzn)

Clearly Mx(t,0) = Mx, (¢).

Problems from the Text

Section 2.1: 1,2,3,6,7,9,12

2.2 Transformations of Bivariate RV

Assume that X is a random vector and Y is some function ¥ = ¢(X) of X.
Given the joint pdf of X we can find the pdf of Y by going through the cdf:

finding
Fy(y) :# fI1,l‘2($17$2)d$
S={z|g(x)<y}

and then differentiatin to get fy (y).

In this section we look at the method of transformations for doing the same
thing.

2.2.1 Discrete Case

In the one variable case when we had ¥ = g(X) for one-to-one ( and increasing)
g we observed that clearly p,(y) = p(¢~'(y)). Now, when Y = g(X1, X2) we
are not one-to-one. We overcome this by extending g to a transformation of
random vectors.

Example 2.2.1. Let X = (X3, X3) have pmf

,u/ql’.l ’u';2e_ﬂ1 e M2

Pm($1,$2)= z; €N,

$1!.232!

and Y7 = X7+ X5. This is not one-to-one, but we can make it so by introduction
a dummy variable Y5 and extending it to a one-to-one transformation w of

vectors:
{ Y } _ [ uy (X1, X2) } _ { X1+ X5 }
Y, uz (X1, X2) X1 '
This is indeed one-to-one as it has the inverse transformation
Xl _ w1 (Y17 5/2) — Y2
Xo wa(Y71,Y2) Yi-Y, |’
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So as in the one variable case, we clearly have

’u@lf"‘ Ugl TY2p—H1p—H2
PyY1,Y2) = P (W1 Y1, Y2), W2 Y1,Y2)) =
y( ) = pa(wi( ), wa ) TE—T

Now the sample space of X is N2, and w maps this to the space
{(Y1,Y2) | Ya €N, Y, — Y3 € N}
which means Y5 € N, Y7 € N and Y < Y7.
Then py, (y1) is the marginal pmf

Y1 Y2  Y1—Y2 —H1p—H2

M1 H €
pyl(yl) = Z L=

= Yol (y1 — y2)!
_ e~ (n1tuz2) yzl y1! YR Y
1! y2=0 yo!(yr — o)t ’
T
o 2, 1 2
(11 + po) e (intre)
- v1!

where the last line uses the binomial expansion of (u1 + p2)¥'.

Problem 2.2.2. We might write the transformation u in the above example as

i| |11 X3
Y| |10 Xo |’
calling the square matrix in the middle U. Write the inverse transformation as
X1 | Y;
%=l
for some square matrix W. What do you notice about U and W?

2.2.2 A Continuous Example

Let X = (X1,X5) have the uniform distribution on the unit square D =
{(z1,22) | 0 < x; < 1}; so the pdf fx is 1 on D and 0 elsewhere.

To find the pdf of Y7 = X7 + X5, we add the dummy variable Y5 and extend
Y1 to the transformation

-l ][RR
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with inverse transformation

][y ]

Yi+Yo
— 2
- Yi—-Y5
2

The transformation u takes the
sample space D of X to the sample
space u(D) shown on the right.

Problem 2.2.3. Describe u(D) math-
ematically and show that it is as
drawn.

Now to get the pmf of Y we integrate fx over D and then differentiate with
respect to Y. In short, want the function fy such that

# fy (1, y2) dyr dyz = # fx (1, 22) dxi1 dxa.
u(D) D

Recall from calculus that where J is the Jacobian

g dwows Ow wy (1N 1y 11 1
Oy Oya Oyo Oyr \ 2 2 22 2

we have

fy(y) = fx(w(y)) 17| =1- ’_;‘ -1

on u(D) and 0 elsewhere.

To get the marginal pdf fy, we then integrate with respect to Y. When
y1 €[0,1], fy(y1,92) is 1 for ya € [=y1,31], so

Y1 1
i (1) =/ §dy2 =1

—Y1

and (as u(D) is symmetric about y; = 1,) when y; € [1,2], fv(y1,42) = fy(2—
Y1,92) 50 fvi(y1) =2 —y1.

2.2.3 Recalling Jacobian from Calculus

The formula fy(y) = fx(w(y))-|J| can be proved by considering approximation
of the integral @U(D) Iy (y)dy. We would use >, fy(£)A?: the sum of fy at

points £ of a A lattice on u(D), each multiplied by the area of the A square Dy
in the positive directions from /.

So that ¢f, 1, fy(y)dy = ¢f, fx(x) de, fy (£)A? should then be equal to
fx(w(f))A where A is the area of the w(Dy).
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But w(D,) is approximatley a
parallelogram between the vectors

Owy Ows Owy Ows . . ‘I:p;j
AlGyrs gyr) and A(F, 5,2), so has ;
area approximately emy,

Ow; Owa

_ A2|9y1  Ou1
A - A 6w1 8w2 ‘

dy2  Oy2

Taking limits in this argument gives the Jacobian formula.

Problems from the Text

Section 2.2:

1,3,5,6

2.3 Conditional Distributions

Definition 2.3.1. Let (X,Y) be a random vector. The conditional pmf (pdf)
of X, conditioned on Y, is

px,y(z,Y)

(or the same with f in place of p).

In the discrete case we have that px|y (z|y) is the probability that X = x
given that Y = y. The continuous case is the density analogue.

In the case of the random vector (X1, X2) we may use shortcut notation such

as pi|2 for PX1|Xa-

Example 2.3.2. Let (X,Y) have the joint distribution px y shown.
Pry (2g)

NHE

all3].1

Pyty)

W

Q
-

{
|
i

—
e

|
|5

wa(xlc) _l[‘llo R m
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Then the marginal pmf px takes z to the sum of the z** column, and and
the marginal pmf py takes y to the sum of the y* row. So p,(3) = .15 and
py (b) = .35. The conditional pmf px|y (x|y) restricts to the y'" row, scales it
by 1/py (y) (so that it sums to 1) and then returns the x value.

Observe that for fixed y the function

DXy 1 T pX|Y(~T|3/)

is itself the pmf of a random variable, the conditional random variable (or con-
ditional distribution) which we denote X|y. Being an RV, we can compute its
mean and variance.

D

The notation px|y vs px|y can get confusing. The argument of px |y is z|y,

with two values, the argument of px), is simply z. Use this heuristic aid: if
the letter in the index is uppercase, the argument has a corresponding lower

case value.

Example 2.3.3. Let (X,Y) have the pdf fx y(z,y) = 6y on its support 0 <
y < x < 1. We find the mean u of X|y.

First, by definition p = E(X|y) = f r - fx)y(z)dx, so we need to find
Ixiy(®) = fxy(zly) = Ix, y(( ; Y Now the marginal pmf in y is

1
b = [ fow () dx = / 6y dx = 6y(1 — y),

SO
fxy(z,y) 6y 1
xTr) = = = ,
Fxiy(@) Iy (y) 6y —6y> 11—y
and so .
1 1+y
X D — T e—— — —_— 2 —_— —
Kl = 0 [ rde= 5000 =

Problem 2.3.4. Show that the variance of X |y above is 02 = %
We showed for any y in [0,1] that E(X|y) = H—y This is a transformation
g(Y) of Y, where g(y) = +y , so itself gives us random variable. We denote this
random variable by E(X|Y) Its sample space is [1/2,1].

Example 2.3.5. By the method of transformations we have that the pdf of
E(X|Y) is

-2 =2z.

fexm(2) = fyr(22 —1) ‘ d(2z — 1)‘ _1+(22-1)

dz 2

We used that the inverse transformation is y = g71(2) = 22 — 1.
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The following simple observation will be a useful tool in finding ‘minimum
variance estimators.’

Theorem 2.3.6. For a random vector (X,Y),

i) B(E(X|Y)) = E(X).

it) Var (E(X]|Y)) < Var(X).
Proof. For the first statement we have:

E(E(X]Y))

| Xl way

/Z /Z e fxpy(xly) fy(y) dxdy

[ [ = feriem axdy = Bex)

For the second, we show
B (E(X|Y)?) < B(X?);

taking p? from both sides of this equation then gives the result we are looking
for.

E(BE(X|Y)?)

/R E(X|y)? - fr (y) dy

IN

/ E(X2|y) . fy (y) dy (applying E(X)2 < E(X2) to the RV X|y )
R

/R/RmeX\Y(fCIy) - fy (y) dxdy

[ [ # v axay
RJR
B(X?)

Problems from the Text

Section 2.3: 1,2,3,5,7
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2.5 Independent Random Variables

Definition 2.5.1. Random variables X and Y, with joint pdf fxy and marginal
pdfs fx and fy, are independent if

fxv(z,y) = fx(@) - fr(y)
(holds with probability 1). They are dependent otherwise.

There are several equivalent definitions of independence.

Theorem 2.5.2. The following are equivalent for RVs X and Y.

i) X andY are independent

it) fxv(z,y) = g(z)h(y) (almost everywhere) for some non-negative func-
tions g and h

iii) The cdfs satisty Fxy (z,y) = Fx(z)Fy (y) for all © and y.
iv) For all intervals Sx and Sy C R,

P(X € Sx,Y € Sy) = P(X € Sx)P(Y € Sy).

Proof. That 1) impies ii) is immediate from the definition. We first show ii)
implies 1). Assuming ii), the marginal pdfs are

fx(z) = / 9(2)h(y) dy = g(z) / h(y) dy = erg(e)

for some constant ¢; and fy (y) = coh(y) for some constant co. As

1= /R /R fv(o,y) dy dz = /R /R 9(@)h(y) dy da

= /Rg@) div/Rh(y) dy = c1co

we get that cico = 1. So
Ix () fy(y)

fxv (2,y) = g(z)h(y) = c1C2

= [x(x)fy(y).

For i) implies iii):

Fxy(z,y) = /;/:ny(s,t)dtdsz//fX(s)fy(t)dtds
[ #xts)as [ vt = PPy )
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For iii) implies i):

82ny(l‘,y) 82

fxv(z,y) = ooy amayl"X(JL”)FY(y)

fx(w)a%FY(y) = Fx(@)fr ()

The proof of the equivalence of iii) and iv) is just as straight forward, so we
skip it. O

Theorem 2.5.3. If X and Y are independent, then E(XY) = E(X)E(Y).
Proof.

E(XY)

/ / zyfxy(z,y)dyde = / zyfx(x) fy (y) dydz
= [arx@ s [uprw)ay = BCOEY)

O
Problem 2.5.4. Show that if X and Y are independent, then E(X|y) = E(X).

Problems from the Text

Section 2.5: 1,3,4,5,8,9,12

2.4 The Correlation Coefficients

The following is done for continuous variables, which are assumed to be nice,
(ie., all necessary expectations are assumed to exist). It holds though for discrete
variables as well.

For random variables X and Y with means pux and py respectively, the
covariance is Cov(X,Y) = E((X — pux)(Y — py)).

Problem 2.4.1. Show that Cov(X,Y) = E(XY) — puxpy.
Observe that if X =Y then Cov(X,Y) = E(X?) — E(X)? = Var(X); so the
covariance can be seen as a generalisation of the variance.

Problem 2.4.2. Show that if X and Y are independent, then Cov(X,Y") = 0.
Show if E(X|y) is an increasing (decreasing) function of y then Cov(X,Y) > 0
(Cov(X,Y) < 0).
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The magnitude of Cov(X,Y) is hard to interpret, but the normalised version,
the correlation coefficient

~ Cov(X,Y)

- oxoy
has the property that —1 < p < 1. If X =Y then p =1 and if X = —Y then
p = —1. So |p| is a measure of how closely X and Y are related.

Problems from the Text

Section 2.4: 1,3,4,10

2.6 Extension to more Random Variables

Let X = (X4,...X,,) be an n dimensional random vector. Its joint cdf is
Fx(x) = P(X; <21, Xp < 29,... X, < 1)

and its joint pdf is a function fx such that

1 Yn
Fx(y) = / fx(x)da, ... dz.
The conditional pdfs are

fx|x; (zlzi) = J{?Ejﬂ?)

The variables X, ... X,, are mutully independent if

fx(@) =[] fx (@)
i=1

(with probability 1.)
In this case
B(JJuwi(x) =[] E(ui(X.))
for any transformations u; of X;. In particular:

Theorem 2.6.1. Let T = Z?:l k; X; where X1,..., X, are mutually indepen-
dent RVs having respective mgfs Mi(t),..., M,(t). The RV T has mgf

MT(t) - H Mz(kzt>
Proof.
MT(t) = E(etT) _ E(etzkiXi) — E(H etkiXi)
HE(etk,:Xi) — HMi(kit)
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A vector of RVs is independent identically distributed or iid if the components
are mutually independent and all have the same pdfs. An m-dimensional iid
random vector of variables all having the same pdf as a RV X is an random
sample of distribution X ; it has n tests, or n samples, or simply has size n.
Often we implicitly assume n is the size of the sample.

Corollary 2.6.2. If X is a random sample of distribution X then Ms~ x,(t) =
(Mx, (£))".

Problems from the Text

Section 2.6: 1,2

2.7 Transformations for more Variables
This is mostly the same as Section 2.2 so we skip it, except for noting what the
jacobian looks like for more variables.

For n-dimensional random vectors X and Y a transformation w : X — Y is
described by Y; = u;(X1,...X,) for i =1,...,n and its inverse is described by
Xi = wi(Yh N ,Yn)

The jacobian is the determinant

w1y owq
9y1 e OYn
Owy, Ow,
dy1 T Oyn

2.8 Linear Combinations of Random Variables

Let X and Y be random vectors. By the linearity of expectation

Further
Cov(d a;Xi,Y bY;) = E ((Z aXi - S aBx)O 0¥ -y biE(Yi))>
EQO > aibjXiY; =Y Y " aib E(X)Y; + ...

= Y > wbE[XY; - XiE(Y;) — E(X,)Y; + E(X;)E(Y;)]
= 3N abE(Xi - BE(X:)(Y; - E(Y;))]
Z Z aibj COV(XZ', }/j)
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In the case that X =Y this gives that

Var(z a; X;) ZZala] Cov(X;, X;) Za Var(X

where the last inequality uses that the non-diagonal terms are 0 by the inde-
pendence of the variables.

If X is a random sample of a distribution X having mean g and variance

o2, then the sample mean is
<o 2K

n

It has expected value

_ :E(iZXi>:nE7(LX

&=
s

and variance

1\3

Var(X) = Z Var(X
The sample variance is

(X -X)? Y X2-nX
n—1 o n—1

% =

We get the second equality above as follows.

Yxi-X)? = (X -2X,X+X)
Sx?-2XY X, +uX

ZX?—ZnY2—|—nY2 :ZXZ-Q—nYQ

The sample variance is a random variable. It has expected value

B(S?) = 11<ZE(X3)—nE(Y2))

n —

n—1

= L (e a+ D)) = o

Problems from the Text

Section 2.8: 2,3,10
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B Cycles in G,

We give an analysis of the number of cycles in G, ,, exhibiting how we use the
concepts (to be) developed in Chapters 1, 2 and 3.

B.1 The probability that G, , is a cycle

In Chapter 1, we viewed G, , as a sample space containing every possible graph
on n vertices. Where N = (g), any graph H with m edges occured with
probability p™gN ™.

To calculate the probability that G,, ), is isomorphic to some graph H, we
must count the number of isomorphic copies of H in G, j,, and then use the
additivity of probability on these (disjoint) basic event.

Example B.1.1. The event C,, that G = G, is an n-cycle contains n!/2n
different outcomes, as this is the number of different n-cycles on n labelled
vertices, and each occurs with probability p™(1 — p)(g)_". So the probability
that G is an n-cycle is

! ")—n n! n

P(Cy) = %p"(l —p)E)n = o

Problem B.1.2. What is the probability that G = G, ;, is a k-cycle? That it
is a cycle of any girth?

(p

B.2 Expected number of cycles in G,

Finding the probability that Gy, , is a cycle is easy, it is a much harder task to
find the probability that G, , contains a cycle.

For a cycle c on the vertices [n], let Y. be the event that G, , contains c.
The following is not so hard.

Problem B.2.1. Find P(Y,).

However, for two different n-cycles ¢ and ¢/, Y, and Y, are not independent
as they were when the event were that G,, ;, is ¢, so we cannot get a precise value
for the probability that G, contains any n-cycle by using the subadditivity of
probability.

But we can get a bound using the expected number of cycles. If the expected
number of cycles is much less than 1, then the probability of a cycle is low. If
the expected number of cycles is much more than 1, then the probability of a
cycle is high.

We observed in Example 2.1.3 that G, ;, can be viewed as a random vector
of N = (}) independent RVs X;. To count the expected number of edges we

43



find the expected value of the RV M = Zf\;l X; which essentially counts edges
of G p.

We use the same setup to count the number of copies of any substructure:
define an indicator variable for each possible occurence, and a ‘counting’ variable
as the sum of the indicators. Then the expected value of this counting variable
is the expected number of copies of the substructre in G,, .

Example B.2.2. Every permutation of the set [n] determines an n-cycle on
[n], but each cycle is determined by 2n such permutations, so there are n!/2n
different n-cycles in G, . Let Y. = HSEC X, indicate the event that the cycle
¢isin G. Then E(Y,) = E(X.)" = p". Let C,, = >_ Y. count the number of
n-cycles in G. Then by the additivity of expectation we have that the expected
number of n-cycles in G is

E(C,) = ZE(YC) =nl/2n-p" = (np)".

Problem B.2.3. Show that the expected number of k-cycles is

n!

E(Cy) = m

pF < (np)*/k

and that the expected number of cycles of any girth is

n

B(C) = 3 (np)/k.

k=3

Now when p = 1/n we get that
n n n—1
E(C) =Y (np)*/k <> 1/k < / 1/zdx < In(n/2),
k=3 k=3 3

which is a pretty small number; bigger than, but close to 1. By taking p a tiny
bit bigger, we will have a very good probabilty that G, , contains a cycle. On
the other hand, by taking p a bit smaller, we will see that Gy, , almost never
contains a cycle.

We have to introduce some language for these ideas.

B.3 Asymptotics and thresholds

Definition B.3.1. Recall that for functions f,g: N — R we write f = o(g) if
lim M =0.

Problem B.3.2. Show that
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i) f=o0(1) if and only if lim, . f(n) = 0.
ii) p =o(1/n) if and only if lim,_, pn = 0.

Example B.3.3. We show that if p = o(1/n) then E(C) = o(1), where C is
the random variable counting the number of cycles in G, ;.

Indeed, if p = o(1/n) then for every € > 0 there is some N such that n > N,
implies that np < min(e,1/2). So

n

BO) =S )k < 231/ )
k=3

k=3

< 52%1/2’C <e

k=2

This gives us that F(C) — 0, as needed.

Definition B.3.4. Any event C' C % in the sample space of the random graph
Grnp ~ (X1,...,X.) is a property. The probability that Gy, has a property C
is P(C). If P(C) — 1 as n — oo then C occurs asymptotically almost surely
(aas) or with high probability (whp) aas.

Problem B.3.5. Using Markov’s inequality, show that if p = o(1/n), then
where C' is again the random variable counting the cycles in G, ;,, show that
the property C' = 0 occurs aas.

It might be suprising therefore that if p = (1+¢)/n then ass C > 1. This is
called a threshold.

Definition B.3.6. For a property C of the random graph G, ,, a threshold for
C' is a probability pg such that if p/pg = o(1) then aas C doesn’t occur, and if
po/p = o(1) then aas C' does occur.

Theorem B.3.7. Containing a cycle is a property of G,, ,. The value po =1/n
18 a threshhold for this property.

Proof. We have shown that if p = o(1/n), so if p/po = o(1), then ass G, ,
contains no cycles. We have to show that if po/p = o(1), so if p/n — oo then
Gp almost surely has a cycle. This uses the simple observation that if G, ;
has at least n edges, then it must contain a cycle. So we show that if p/n — oo,
then ass G, has at least n edges.

As before, let M = Zf\il X; be the random variable counting the edges of
Grp. We saw that g = E(M) = pN = %’H Lets compute the variance o2
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E(M?) = E(M-Y X;)=)» E(M-X;)=NEM:-X,)
= NE()_X;-X;)=N(N-1)E(X;-X,)+ NE(X})
= N(N—1)p°+ Np= Np(p(N —1) + 1),
we get that

0® = E(M?) — i = Np(p(N — 1) + 1 — Np) = Np(1 — p) < p.

Taking p > 5/n we get that u > 2n so by Chebyshev’s inequality we there
for get that

2
2
P(M>n)>P(|M—2n|<n):P(\M—u\<n)>1—%>1—ﬁ.

As p/n — oo, we have for large enough n that p > 5/n, and so P(M > n) >
(1-2)—1. O

What we have done in this proof is shown that the distribution M is ‘con-
centrated’ around its mean p, and that this concentration increases as n does.
An important fact that we will soon expand on.
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3 Some Special Distributions

3.1 Binomial and Related Distributions

We have given a name to only one distribution so far: the uniform distribution
whose pdf or pmf is constant on its support. There are several other distributions
that occur repeatedly in mathematics and statistics. One of the most basic is
the Binomial Distribution, which we build from the following distribution, which
we will recognise as the distribution of outcomes when tossing a p-coin.

Bernoulli X ~ b(1,p)

3.1.1 The Bernoulli Distribution

Definition 3.1.1. An RV X has a Bernoulli distribution, or is a Bernoulli RV,
if its support is {0,1}. Its pmf is

f(x):{p if o =1

1—p otherwise,
for some probability p € [0,1].
If X is a Bernoulli distribution with probability p, then its mean is p = p
and its variance is 02 = p(1 — p) = pq.

Indeed, u=p-1+(p—1)-0=p, and E(X?)=p-12+(p—1)-02 =p, so
0? = B(X?) — p? =p—p* =p(l - p).

The Bernoulli distribution of probabilitly p is thus more often called the
Bernoulli distribution of mean p.

3.1.2 The Binomial Distribution

Binomial X ~ b(n,p)

Often a probabilitly space consists of n independent Bernoulli spaces. The
random graph G, , is an example of this, the experiment of tossing 100 p-coins
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is a simpler example. When tossing 100 p-coins, the only random variable of
any interest is that which counts the number of times we the outcome is "heads’.
This is the Binomial distribution.

Definition 3.1.2. A random variable Y has the Binomial distribution b(n,p)
if
Y=>X;
i=1
for a family {X;};c[n of iid Bernoulli RVs with mean p.

Clearly the pmf of Y ~ b(n,p) is

fly) = (Z)py(l -

on its support y = 0,1,...,n. By the linearity of expectation, its mean is
n
p=EY)=> E(X;)=> p=np.
i=1

The random variable M counting the edges of G,, ;, is the binomial distribu-
tion b(n, p). We did the following in the proof of Theorem B.3.7.

Problem 3.1.3. Show that the variance of Y ~ b(n,p) is 2 = np(1 — p).

The ’concentration’ part of the proof of Theorem B.3.7 can be viewed in the
following way.

Example 3.1.4. If Y ~ b(n, p), then Y/n can be viewed as the 'rate of success’
of the trials Xy, ..., X, making up Y. Clearly E(Y/n) = E(Y)/n =np/n = p,
and one can show that Var(Y/n) = t£5n. So by Chebyshev,

o Var(Y/n) _p(l-p)

P(‘Y/n_p|25) e2 ne?

This means that the rate of success of the trials X; is more and more con-
centrated around p as n gets bigger. This is an example of the Law of Large
Numbers.

The mgf of X ~ b(n,p) is

M) = éewt@f”mq"‘””:i(Z)@et)wq"-w

= (pe' +q)"

Problem 3.1.5. Use the mgf to find p and o2 of X ~ b(n, p).
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Problem 3.1.6. Show that if X; ~ b(n;,p) fori=1,...,d then Y = 2?21 X;
has distribution b(3>%, ny, p).

We do not do much with the rest of the distributions in this section. We
simply define them so that we have seen them.

3.1.3 The geometric and negative binomial distributions

For the binomial distribution b(n,p) we conducted n independent Bernoulli
trials with mean p and counted the number of successes. For the Geometic
distribution Y, we conduct Bernoulli trials with mean p until there is a success.
We let Y count the number of failures.

Formally, the geometric RV with parameter p is the RV with pmf
p(y) =1 —p)’-p.

More generally the negative binomial RV with parameters p and r is the RV
that counts the number of failures that occur, when conducting Bernoulli trials
b(1,p), until the r*" success. It has pmf

ply) = <y ji; 1)p’"(l —p)V.

3.1.4 The Hypergeometric Distribution
Hypergeometric

In a lot of N items, D are defective. We choose n items. The RV X
that counts the number of chosen items that are defective is a hypergeometric
distribution. Its pmf is

(a) ()
n—x x

Y
The expected value of X is
1S -5 (1) () ()
=0
Using that b(¢) = a(§~]) and so

-
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